1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
use crate::algorithms::fo_logic::fol_tree::*;
use crate::algorithms::fo_logic::operator_enums::*;
use crate::algorithms::fo_logic::tokenizer::{try_tokenize_formula, FolToken};
use crate::algorithms::fo_logic::utils::validate_and_rename_vars;

/// Parse an FOL formula string representation into an actual formula tree.
/// Basically a wrapper for tokenize+parse (used often for testing/debug purposes).
///
/// Note that [validate_and_rename_vars] still NEEDS to be called to fully finish
/// the preprocessing step. Alternatively, use [parse_and_minimize_fol_formula] which
/// offers full preprocessing and validation at once.
pub fn parse_fol_formula(formula: &str) -> Result<FolTreeNode, String> {
    let tokens = try_tokenize_formula(formula.to_string())
        .map_err(|e| format!("Error during FOL formula processing: {}", e))?;
    let tree = parse_fol_tokens(&tokens)
        .map_err(|e| format!("Error during FOL formula processing: {}", e))?;
    Ok(tree)
}

/// Parse an FOL formula string representation into an actual formula tree with renamed (minimized)
/// set of variables.
///
/// Basically a wrapper for the whole preprocessing step (tokenize + parse + rename vars).
///
/// The format of variable names is given by how `lib_param_bn::SymbolicContext::with_extra_state_variables`
/// creates new extra variables. Basically, we choose a name of one BN variable (`var_core_name`),
/// and it is used as a base for extra variables `{var_base_name}_extra_{index}`.
pub fn parse_and_minimize_fol_formula(
    formula: &str,
    base_var_name: &str,
) -> Result<FolTreeNode, String> {
    let tree = parse_fol_formula(formula)?;
    let tree = validate_and_rename_vars(tree, base_var_name)
        .map_err(|e| format!("Error during FOL formula processing: {}", e))?;
    Ok(tree)
}

/// Predicate for whether given token represents a quantifier.
fn is_quantifier(token: &FolToken) -> bool {
    matches!(token, FolToken::Quantifier(..))
}

/// Predicate for whether given token represents unary operator.
fn is_unary(token: &FolToken) -> bool {
    matches!(token, FolToken::Unary(_))
}

/// Utility method to find the first occurrence of a specific token in the token tree.
fn index_of_first(tokens: &[FolToken], token: FolToken) -> Option<usize> {
    return tokens.iter().position(|t| *t == token);
}

/// Utility method to find the first occurrence of a quantifier operator in the token tree.
fn index_of_first_quantifier(tokens: &[FolToken]) -> Option<usize> {
    return tokens.iter().position(is_quantifier);
}

/// Utility method to find the first occurrence of an unary operator in the token tree.
fn index_of_first_unary(tokens: &[FolToken]) -> Option<usize> {
    return tokens.iter().position(is_unary);
}

/// Parse `tokens` of FOL formula into an abstract syntax tree using recursive steps.
pub fn parse_fol_tokens(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    parse_1_quantifiers(tokens)
}

/// Recursive parsing step 1: extract quantifier operators.
///
/// Quantifier must not be immediately preceded by any other kind of operator.
/// We only allow it to be preceded by another quantifier, otherwise parentheses must be used.
/// (things like "!V x: ..." are forbidden, must be written in parentheses as "!(V x: ...)"
fn parse_1_quantifiers(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let quantifier_token = index_of_first_quantifier(tokens);
    Ok(if let Some(i) = quantifier_token {
        // perform check that hybrid operator is not preceded by other type of operators
        if i > 0 && !matches!(&tokens[i - 1], FolToken::Quantifier(..)) {
            return Err(format!(
                "Quantifier can't be directly preceded by '{}'.",
                &tokens[i - 1]
            ));
        }
        match &tokens[i] {
            FolToken::Quantifier(op, var) => FolTreeNode::mk_quantifier(
                parse_1_quantifiers(&tokens[(i + 1)..])?,
                var.as_str(),
                *op,
            ),
            _ => unreachable!(), // we already made sure that this is indeed a quantifier token
        }
    } else {
        parse_2_iff(tokens)?
    })
}

/// Recursive parsing step 2: extract `<=>` operators.
fn parse_2_iff(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let iff_token = index_of_first(tokens, FolToken::Binary(BinaryOp::Iff));
    Ok(if let Some(i) = iff_token {
        FolTreeNode::mk_binary(
            parse_3_imp(&tokens[..i])?,
            parse_2_iff(&tokens[(i + 1)..])?,
            BinaryOp::Iff,
        )
    } else {
        parse_3_imp(tokens)?
    })
}

/// Recursive parsing step 3: extract `=>` operators.
fn parse_3_imp(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let imp_token = index_of_first(tokens, FolToken::Binary(BinaryOp::Imp));
    Ok(if let Some(i) = imp_token {
        FolTreeNode::mk_binary(
            parse_4_or(&tokens[..i])?,
            parse_3_imp(&tokens[(i + 1)..])?,
            BinaryOp::Imp,
        )
    } else {
        parse_4_or(tokens)?
    })
}

/// Recursive parsing step 4: extract `|` operators.
fn parse_4_or(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let or_token = index_of_first(tokens, FolToken::Binary(BinaryOp::Or));
    Ok(if let Some(i) = or_token {
        FolTreeNode::mk_binary(
            parse_5_xor(&tokens[..i])?,
            parse_4_or(&tokens[(i + 1)..])?,
            BinaryOp::Or,
        )
    } else {
        parse_5_xor(tokens)?
    })
}

/// Recursive parsing step 5: extract `^` operators.
fn parse_5_xor(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let xor_token = index_of_first(tokens, FolToken::Binary(BinaryOp::Xor));
    Ok(if let Some(i) = xor_token {
        FolTreeNode::mk_binary(
            parse_6_and(&tokens[..i])?,
            parse_5_xor(&tokens[(i + 1)..])?,
            BinaryOp::Xor,
        )
    } else {
        parse_6_and(tokens)?
    })
}

/// Recursive parsing step 6: extract `&` operators.
fn parse_6_and(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let and_token = index_of_first(tokens, FolToken::Binary(BinaryOp::And));
    Ok(if let Some(i) = and_token {
        FolTreeNode::mk_binary(
            parse_7_unary(&tokens[..i])?,
            parse_6_and(&tokens[(i + 1)..])?,
            BinaryOp::And,
        )
    } else {
        parse_7_unary(tokens)?
    })
}

/// Recursive parsing step 7: extract unary operators (just a negation currently).
fn parse_7_unary(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    let unary_token = index_of_first_unary(tokens);
    Ok(if let Some(i) = unary_token {
        // perform check that unary operator is not directly preceded by some atomic sub-formula
        if i > 0 && matches!(&tokens[i - 1], FolToken::Atomic(..)) {
            return Err(format!(
                "Unary operator can't be directly preceded by '{:?}'.",
                &tokens[i - 1]
            ));
        }

        match &tokens[i] {
            FolToken::Unary(op) => FolTreeNode::mk_unary(parse_7_unary(&tokens[(i + 1)..])?, *op),
            _ => unreachable!(), // we already made sure that this is indeed an unary token
        }
    } else {
        parse_8_terms_and_parentheses(tokens)?
    })
}

/// Recursive parsing step 8: extract terms and recursively solve sub-formulae in parentheses and in
/// functions.
fn parse_8_terms_and_parentheses(tokens: &[FolToken]) -> Result<FolTreeNode, String> {
    if tokens.is_empty() {
        Err("Expected formula, found nothing.".to_string())
    } else {
        if tokens.len() == 1 {
            // This should be a constant, name (var/function) or a parenthesis group, anything
            // else does not make sense.
            match &tokens[0] {
                FolToken::Atomic(Atom::Var(name)) => {
                    return Ok(FolTreeNode::mk_variable(name.as_str()));
                }
                FolToken::Atomic(Atom::True) => {
                    return Ok(FolTreeNode::mk_constant(true));
                }
                FolToken::Atomic(Atom::False) => {
                    return Ok(FolTreeNode::mk_constant(false));
                }
                FolToken::Function(fn_symbol, arguments) => {
                    let mut arg_expression_nodes = Vec::new();
                    for inner in arguments {
                        // it must be a token list
                        if let FolToken::TokenList(inner_token_list) = inner {
                            arg_expression_nodes.push(parse_fol_tokens(inner_token_list)?);
                        } else {
                            return Err("Function must be applied on `FolToken::TokenList` args."
                                .to_string());
                        }
                    }
                    return Ok(FolTreeNode::mk_function(
                        &fn_symbol.name,
                        arg_expression_nodes,
                        fn_symbol.is_update_fn,
                    ));
                }
                // recursively solve sub-formulae in parentheses
                FolToken::TokenList(inner) => {
                    return parse_fol_tokens(inner);
                }
                _ => {} // otherwise, fall through to the error at the end.
            }
        }
        Err(format!("Unexpected: {tokens:?}. Expecting formula."))
    }
}

#[cfg(test)]
mod tests {
    use crate::algorithms::fo_logic::fol_tree::*;
    use crate::algorithms::fo_logic::operator_enums::*;
    use crate::algorithms::fo_logic::parser::parse_fol_formula;

    #[test]
    /// Test whether several valid FOL formulae are parsed without causing errors.
    /// Also check that the formula is saved correctly in the tree root.
    fn parse_valid_formulae() {
        let valid1 = "(\\exists x: f(x))";
        let tree = parse_fol_formula(valid1).unwrap();
        assert_eq!(tree.as_str(), valid1);
    }

    #[test]
    fn operator_priority() {
        assert_eq!(
            "(((((!a) ^ ((!b) & (!c))) | (!d)) => (!e)) <=> (!f))",
            parse_fol_formula("!a ^ !b & !c | !d => !e <=> !f")
                .unwrap()
                .as_str()
        )
    }

    #[test]
    fn operator_associativity() {
        assert_eq!(
            "(a & (b & c))",
            parse_fol_formula("a & b & c").unwrap().as_str()
        );
        assert_eq!(
            "(a | (b | c))",
            parse_fol_formula("a | b | c").unwrap().as_str()
        );
        assert_eq!(
            "(a ^ (b ^ c))",
            parse_fol_formula("a ^ b ^ c").unwrap().as_str()
        );
        assert_eq!(
            "(a => (b => c))",
            parse_fol_formula("a => b => c").unwrap().as_str()
        );
        assert_eq!(
            "(a <=> (b <=> c))",
            parse_fol_formula("a <=> b <=> c").unwrap().as_str()
        );
    }

    #[test]
    /// Test parsing of several valid FOL formulae against expected results.
    fn compare_parser_with_expected() {
        let formula = "(false & v1)";
        let expected_tree = FolTreeNode::mk_binary(
            FolTreeNode::mk_constant(false),
            FolTreeNode::mk_variable("v1"),
            BinaryOp::And,
        );
        assert_eq!(parse_fol_formula(formula).unwrap(), expected_tree);

        let formula = "\\exists x: f(x)";
        let expected_tree = FolTreeNode::mk_quantifier(
            FolTreeNode::mk_function("f", vec![FolTreeNode::mk_variable("x")], false),
            "x",
            Quantifier::Exists,
        );
        assert_eq!(parse_fol_formula(formula).unwrap(), expected_tree);

        let formula = "\\exists x: f_VAR_A(x)"; // the fn symbol should be saved as update fn
        let expected_tree = FolTreeNode::mk_quantifier(
            FolTreeNode::mk_function("f_VAR_A", vec![FolTreeNode::mk_variable("x")], true),
            "x",
            Quantifier::Exists,
        );
        assert_eq!(parse_fol_formula(formula).unwrap(), expected_tree);

        let formula = "\\forall x: \\exists yy: (f(1, !yy) & x)";
        let expected_tree = FolTreeNode::mk_quantifier(
            FolTreeNode::mk_quantifier(
                FolTreeNode::mk_binary(
                    FolTreeNode::mk_function(
                        "f",
                        vec![
                            FolTreeNode::mk_constant(true),
                            FolTreeNode::mk_unary(FolTreeNode::mk_variable("yy"), UnaryOp::Not),
                        ],
                        false,
                    ),
                    FolTreeNode::mk_variable("x"),
                    BinaryOp::And,
                ),
                "yy",
                Quantifier::Exists,
            ),
            "x",
            Quantifier::Forall,
        );
        assert_eq!(parse_fol_formula(formula).unwrap(), expected_tree);

        let formula = "\\forall x, y: true";
        let expected_tree = FolTreeNode::mk_quantifier(
            FolTreeNode::mk_quantifier(FolTreeNode::mk_constant(true), "y", Quantifier::Forall),
            "x",
            Quantifier::Forall,
        );
        assert_eq!(parse_fol_formula(formula).unwrap(), expected_tree);
    }

    #[test]
    /// Test parsing of several completely invalid FOL formulae.
    fn parse_invalid_formulae() {
        let invalid_formulae = vec![
            "3 x: x x",
            "& x",
            "x x",
            "",
            "! \\exists x: x",
            "\\exists &: x",
        ];

        for formula in invalid_formulae {
            assert!(parse_fol_formula(formula).is_err());
        }
    }
}